Three New Lanostane Triterpenoids, Inonotsutriols A, B, and C, from *Inonotus obliquus*

by Sayaka Taji, Takeshi Yamada, and Reiko Tanaka*

Department of Medicinal Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan (phone: +81-72-690-1084; fax: +81-72-690-1084; e-mail: tanakar@gly.oups.ac.jp)

Three new lanostane-type triterpenoids, inonotsutriols A (1), B (2), and C (3) were isolated from the sclerotia of *Inonotus obliquus* (PERS.: Fr.) (Japanese name: kabanoanatake; Russian name: chaga). Their structures were determined to be $(3\beta,21R,24S)$ -21,24-cyclolanost-8-ene-3,21,25-triol (1), $(3\beta,21R,24R)$ -21,24-cyclolanost-8-ene-3,21,25-triol (2), and $(3\beta,21R,24S)$ -21,24-cyclolanosta-7,9(11)-diene-3,21,25-triol (3) on the basis of NMR spectroscopy including 1D and 2D experiments (¹H,¹H-COSY, NOESY, HMQC, and HMBC) and EI-MS.

Introduction. – Inonotus obliquus (PERS.: Fr.) PIL. (= Fuscoporia obliqua (PERS.: Fr.) AOSHIMA), called kabanoanatake (in Japan) and chaga or tchaga (in Russia), is a white-rot fungus belonging to the family Hymenochaetaceae Donk [1], and the distribution of this mushroom is recognized in Europe, Asia, and North America [2]. The imperfect form of *I. obliquus* occurs parasitically on trunks, usually of *Betula* (birch), and more rarely also on Ulmus, Alnus, and Fraxinus. Only after the tree dies, the perfect form with pores and basidia is produced under the bark. I. obliquus is widely distributed in Hokkaido forests of Betula platyphylla var. japonica (Japanese name: shirakaba) in Japan [3][4]. Recently, several reports have been published concerning the biological activities of *I. obliquus* such as anticancer [5][6], including breast cancer [7], digestive disease [8][9], antioxidant [10][11], antimutation [12], anti-inflammatory [13], antioxidant and genoprotective [14], antibacterial, antiallergic, antiinflammatory, and antioxidant activities [15], and platelet-aggregation inhibitory activity [16]. Recently, we reported the structures of five new lanostane-type triterpenoids isolated from the sclerotia: inonotsuoxides A and B ($(3\beta, 22R, 24S)$ -22,25-epoxylanost-8-ene-3,24-diol and its (22S)-22,25-epoxylepimer) [17], and inonotsulides A, B, and C ((3*β*,20*R*,24*S*)-3,25-dihydroxylanost-8-en-20,24-olide, and its (20R,24R)-20,24-olide epimer, and (3*β*,20R,24S)-3,25-dihydroxylanosta-7,9(11)-dien-20,24-olide) [18] and the antitumor promoting activity of intodiol which is the most abundant triterpene in this sclerotia. Careful examination of the sclerotia of I. obliquus has led to the isolation of three new lanostane-type triterpenes named inonotsutriols A (1), B (2), and C (3). The structures of the new compounds 1-3 were determined on the basis of NMR spectroscopy, including 1D and 2D (¹H,¹H-COSY, NOESY, HMQC, and HMBC) NMR, and EI-MS. Although Shin and co-workers isolated (3β) -20,24cyclolanost-8-ene-3,21,25-triol and determined its planar structure, its absolute config-

© 2008 Verlag Helvetica Chimica Acta AG, Zürich

uration was not described completely [19]. Therefore, this report examines the absolute structures of these components.

Results and Discussion. – Sclerotia of *I. obliquus* were extracted with $CHCl_3$, and from this extract, the three new triterpenes 1-3 were separated by column chromatography (silica gel), medium-pressure liquid chromatography (MPLC), and high performance liquid chromatography (HPLC).

The molecular formula of compound **1** was assigned as $C_{30}H_{50}O_3$ (M^+ at m/z 458.3763) by HR-EI-MS. The IR spectrum showed an OH group ($\tilde{\nu}_{max}$ 3368 cm⁻¹). The ¹H- and ¹³C-NMR ¹H,¹H-COSY, NOE, and HMBC data (*Table 1* and *Fig. 1*) established the structure of inonotsutriol A (**1**) as (3β ,21R,24S)-21,24-cyclolanost-8-ene-3,21,25-triol.

Fig. 1. Key NOE correlations for 1

Table	1. ¹ H and ¹³ C-NMR, ¹ H,	, ¹ <i>H</i> -COSY, NOE, and HMBC ($H \rightarrow 0$	C) Data of 1 . At 500 (¹ H) and 125 (¹³	C) MHz in (CDCl ₃ ; ð in ppm, <i>J</i> in Hz.
	φ(H)	¹ H, ¹ H,COSY	NOE	δ(C)	HMBC
$H_a - C(1)$ $H_{a-C(1)}$	$1.18 - 1.28 \ (m)$ $1 \ 70 - 1 \ 78 \ (m)$	$H_{\beta}-C(1), H_{\alpha}-C(2), H_{\beta}-C(2)$ H -C(1) H -C(2) H ₂ -C(2)	H-C(3), H-C(5) CH ₂ (11) M ₆ (19)	35.6 (t)	C(2)
$H_n^{\beta} - C(2)$	1.64 - 1.71 (m)	$H_n - C(1), H_n - C(1), H_n - C(2)$	H-C(3), Me(19), Me(29)	27.9 (t)	C(1), C(3)
$H_{\beta}^{-C(2)}$	1.54 - 1.63 (m)	$H_a^{-}-C(1), H_{\beta}^{-}-C(1), H_a^{-}-C(2), H_{\alpha}^{-}-C(2), H_{\alpha}^{-}-C(2),$	H–C(3), Me(19), Me(29)		
H-C(3) C(4)	3.23 (dd, J = 11.7, 4.6)	$H_a - C(2), H_\beta - C(2)$	H-C(5), Me(28)	79.0(d) 38.9(s)	C(2), C(4), C(28), C(29)
H - C(5)	1.05 $(dd, J = 11.7, 2.1)$	$\mathrm{H}_{a}-\mathrm{C}(6),\mathrm{H}_{\beta}-\mathrm{C}(6)$	$H_a - C(1), H - C(3), H_a - C(6), H_{-C(7)}, Me(28)$	50.4(d)	C(4), C(6), C(7), C(10), C(19)
$H_a - C(6)$	1.64 - 1.72 (m)	H-C(5), H_{β} -C(6), CH ₂ (7)	Me(28)	18.2 (t)	C(4), C(5), C(10)
$H_{\beta}^{-C(0)}$ CH ₂ (7)	(m) / (2.01 - 1.5) / (m) 2.01 - 2.08 (m)	$H_a - C(5), H_a - C(6), CH_2(7)$ $H_a - C(6), H_\beta - C(6)$	Me(19), Me(29) H–C(5), Me(30)	26.5 (t)	C(8)
C(8) C(9) C(10)				134.3 (s) 134.6 (s) 37.1 (s)	
$CH_{2}(11)$	1.98–2.07 (<i>m</i>)	$H_a - C(12), H_\beta - C(12)$	$H_{\beta}-C(1), H_{\alpha}-C(12), H_{\beta}-C(12), Me(18). Me(19). Me(30)$	20.9(t)	
$H_a - C(12)$ $H_B - C(12)$	1.64 - 1.73 (m) 1.83 - 1.92 (m)	$ ext{CH}_2(11), ext{H}_{eta} - ext{C}(12) \\ ext{CH}_2(11), ext{H}_a - ext{C}(12) \\ ext{C}(12) \\ ext{H}_a - ext{C}(12) \\ ext{C}(12)$	CH ₂ (11), H–C(21) CH ₂ (11), Me(18), H–C(21)	29.0 (t)	C(13)
C(13) C(14)				44.5(s) 49.4(s)	
$H_{\alpha}-C(15)$	1.15 - 1.23 (m)	$H_{\beta}-C(15), H_{a}-C(16), H_{\beta}-C(16)$	$H_a - C(6), Me(30)$	30.8 <i>(t)</i>	C(14), C(16), C(30)
$\mathrm{H_{eta}^{-C(15)}}$ $\mathrm{H_{a}^{-C(16)}}$	1.58 - 1.67 (m) 1.79 - 1.88 (m)	$egin{array}{llllllllllllllllllllllllllllllllllll$	${ m H}_{\!$	26.5 (t)	C(15), C(17), C(20)
$H_{\beta}-C(16)$	1.33 – 1.42 (<i>m</i>)	$\mathrm{H-C}^{(1/)}_{a_{a}}$ -C(15), H_{eta} -C(15), H_{a} -C(10), $\mathrm{H}_{-C}(17)$	$H_{\beta}-C(15), H-C(17), Me(18), H-C(20), H_{\alpha}-C(22)$		
H-C(17)	$1.75 - 1.84 \ (m)$	$H_a - \dot{C}(16), H_\beta - C(16), H - C(20)$	$H_{\beta} - C(16), H - C(21), H_{a} - C(22), Me(30)$	49.0 (d)	C(13), C(16), C(20), C(21)
Me(18)	0.73 (s)		$CH_2(11), H_\beta-C(12), H_\beta-C(15), H_\beta-C(15), H_\beta-C(16), Me(19), H-C(20)$	15.4 (<i>q</i>)	C(12), C(13), C(14), C(17)

Table 1 (co	nt.)				
	φ(H)	1H, ¹ H,COSY	NOE	δ(C)	HMBC
Me(19)	(s) 70.0		$H_{\beta}-C(1), H_{\beta}-C(2), H_{\beta}-C(6), CH_{\beta}(11), Me(18), Me(29)$	19.1 (q)	C(1), C(5), C(9), C(10)
H-C(20)	1.82–1.92 <i>(m)</i>	H-C(17), H-C(21), H _a -C(22), H _a -C(22),	$H_{\beta}-C(16), Me(18), H-C(21), H_{-C(77)}, H_{-C(72)}, M_{0}(76)$	47.8 (<i>d</i>)	C(17), C(21), C(22)
H-C(21)	3.72 (dd, J=8.7, 7.3)	H-C(20), H-C(24)	$H_{\alpha}^{\mu} - C(22), H_{\beta}^{\mu} - C(22), MC(20)$ $H_{\alpha} - C(12), H_{\beta} - C(12), H - C(17), H - C(17), H - C(27)$	79.1 (d)	C(17), C(25)
$H_a - C(22)$	1.17–1.26 (<i>m</i>)	H-C(20), H_{β} -C(22), H_{α} -C(23), H. (23),	$H_{-C}(17), H_{-C}(21), H_{a}-C(23)$	24.5 (t)	C(20), C(21)
$H_{s}-C(22)$	1.63–1.72 (<i>m</i>)	H - C(23) H - C(20), H _c - C(22)	H-C(20), Me(26)		
$H_a - C(23)$	1.30 - 1.40 (m)	$H_{a} - C(22), H_{b} - C(23), H - C(24)$	$H_a - C(20), Me(27)$	27.4 (t)	C(20), C(22), C(24)
$H_{\beta}-C(23)$	$1.77 - 1.86 \ (m)$	$H_a - C(22), H_a - C(23), H - C(24)$	H-C(20), H-C(24), Me(27)		
H-C(24)	1.85 - 1.94 (m)	H-C(21), H _a -C(23), H _b -C(23)	$H-C(21), H_{\beta}-C(23), Me(27)$	57.6 (d)	C(21), C(25)
C(25)				73.5 (s)	
Me(26)	1.20^{a}) (s)		$H-C(20), H_{\beta}-C(22)$	24.1 (q)	C(24), C(25), C(27)
Me(27)	1.23^{a}) (s)		$H_a - C(23), H_B - C(23)$	30.7~(q)	C(24), C(25), C(26)
Me(28)	1.00(s)		$H-C(3), H-C(5), H_a-C(6)$	28.0(q)	C(3), C(4), C(5), C(29)
Me(29)	0.81(s)		$H_{\beta}-C(2), H_{\beta}-C(6), Me(19)$	17.0(q)	C(3), C(4), C(5), C(28)
Me(30)	0.90 (s)		$CH_2(7), CH_2(11), H_a - C(12), H_{a'} - C(15), H_{a'} - C(15), H_{a'} - C(16), H - C(17)$	24.4 (<i>q</i>)	C(8), C(13), C(14), C(15)
a) A seionmo	ants may he reversed				

) Assignments may be reversed.

Helvetica Chimica Acta – Vol. 91 (2008)

The ¹H- and ¹³C-NMR spectra (CDCl₃) of 1 (*Table 1*) exhibited signals of seven Me, ten CH₂, and six sp³ CH groups, including two oxymethines (δ (H) 3.23 (*dd*, *J* = 11.7, 4.6 Hz); δ (C) 79.0 (*d*)); δ (H) 3.72 $(dd, J = 8.7, 7.3 \text{ Hz}); \delta(C)$ 79.1 (d)), five sp³ quaternary C-atoms including one OH group ($\delta(C)$ 73.5 (s)), and a tetrasubstituted C=C bond (δ (C) 134.3 and 134.6 (2s)). The planar structure of **1** was determined by HMBC and ¹H,¹H-COSY experiments. The HMBC data of 1 (Table 1 and Fig. 1) indicated the longrange correlations Me(18) (δ (H) 0.73)/C(12), C(13), C(14), and C(17), Me(19) (δ (H) 0.97)/C(1), C(5), C(9), and C(10), Me(26) ($\delta(H)$ 1.20)/C(24), C(25), and C(27), Me(27) ($\delta(H)$ 1.23)/C(24), C(25), and C(26), Me(28) (δ (H) 1.00)/C(3), C(4), C(5), and C(29), Me(29) (δ (H) 0.81)/C(3), C(4), C(5), and C(28), and $Me(30) (\delta(H) 0.90)/C(8)$, C(13), C(14), and C(15). In the ¹H, ¹H-COSY plot (*Table 1*), the following correlations were observed: H-C(20) ($\delta(H)$ 1.82-1.92)/H-C(17) ($\delta(H)$ 1.75-1.84), H-C(21) ($\delta(H)$ 3.72), and $CH_2(22)$ ($\delta(H)$ 1.17-1.26 and 1.63-1.72), H-C(21)/H-C(20) and H-C(24), H-C(24)/H-C(21) and $CH_2(23)$ ($\delta(H)$ 1.30–1.40 and 1.77–1.86). The molecular formula of $C_{30}H_{50}O_3$ and the spectral data mentioned above suggested that the structure of 1 was a (3 β)-lanost-8en-3,21,25-triol having a cyclopentane ring between C(20) and C(24) in the side chain. The configuration at the cyclopentane-ring members C(20) and C(24) was established as (20R) and (24S) because significant NOEs were observed from H–C(20) to H_{β} –C(16), Me(18), H_{β} –C(23), and Me(26), from $H_a - C(24)$ to Me(27), from Me(26) to $H_\beta - C(20)$ and $H_\beta - C(22)$, and from Me(27) to $CH_2(23)$ and $H_a - C(24)$, indicating the (20*R*,24*S*)-configuration. One of the OH groups was in β -position at C(3) as shown by the chemical shift and the coupling constants (δ (H) 3.23 (dd, $J(3,2\alpha) = 4.6$ Hz and $J(3,2\beta) =$ 11.7 Hz, H-C(3); $\delta(C)$ 79.0 (d)). The configuration at the other secondary, OH-substituted center C(21) was determined as (21R) because the significant NOEs H-C(21)/CH₂(12), H_a-C(17), $H_a-C(22)$, $H_a-C(24)$, and Me(27) and coupling constants ($\delta(H)$ 3.72 (dd, J(21,20) = 8.7 Hz and J(21,24) = 7.3 Hz, H-C(21)) were observed. Other NOEs were observed, *i.e.*, Me(29)/H_{β}-C(2), $H_{\beta}-C(6)$, and Me(19), $H_{\alpha}-C(5)/H_{\alpha}-C(7)$, $H_{\beta}-C(6)/Me(19)$ and Me(29), $H_{\alpha}-C(7)/Me(30)$, $H_a - C(12)/H_a - C(17)$, H - (21), and Me(30), and $H_a - C(11)/Me(18)$. Therefore, the rings A, B, and C in 1 adopted a chair, half-chair, and half-chair conformation, respectively (Fig. 1).

The minor compound **2** had the same molecular formula $C_{30}H_{50}O_3$ (M^+ at m/z 458.3759) as **1** by HR-EI-MS. The IR, ¹H- and ¹³C-NMR, HMBC, and ¹H, ¹H-COSY data (*Table 2*) resembled those of **1** and allowed, together with the NOE data (*Fig. 2*), to establish the structure of inonotsutriol B (**2**) as (3β ,21*R*,24*R*)-21,24-cyclolanost-8-ene-3,21,25-triol, which is a C(24) epimer of **1**.

Differences between the NMR data of **1** and **2** were observed for H-C(17) ($\delta(H)$ 1.65–1.74), H-C(20) ($\delta(H)$ 1.70–1.88), H-C(21) ($\delta(H)$ 3.76), Me(18) ($\delta(H)$ 0.69), and Me(26) ($\delta(H)$ 1.21) and C(12) ($\delta(C)$ 30.6), C(17) ($\delta(C)$ 50.5), C(18) ($\delta(C)$ 16.4), C(20) ($\delta(C)$ 48.9), C(21) ($\delta(C)$ 81.4), and C(24) ($\delta(C)$ 56.0). The configuration at C(20) and C(24) of the cyclopentane moiety was established as (20*R*) and (24*R*) because significant NOEs were observed from H-C(20) to $H_{\beta}-C(16)$, Me(18), $H_{\beta}-C(23)$, and H-C(24), and from H-C(24) to H-C(20), Me(26), and Me(27). The configuration at the OH-substituted C(21) was determined as (21*R*), the same as in **1** because of the significant NOEs $H-C(21)/H_a-C(17)$, $H_a-C(22)$, $H_a-C(23)$, Me(26), and Me(27) and of the coupling constants ($\delta(H)$ 3.76 (*t*, J(21,20) = J(21,24) = 8.7 Hz, H-C(21))) see (*Fig. 2*).

Compound **3** had the molecular formula $C_{30}H_{48}O_3$ (M^+ at m/z 456.3607) by HR-EI-MS. The IR and UV spectra showed OH groups ($\tilde{\nu}_{max}$ 3675 cm⁻¹) and a heteroannular diene moiety (λ_{max} 232, 237, and 245 (ε 12000, 14500, and 9000, resp.). The ¹H- and ¹³C-NMR, ¹H,¹H-COSY, NOE, and HMBC data (*Table 3* and *Fig. 3*) established the structure of inonotsutriol C (**3**) as (3β ,21*R*,24*S*)-21,24-cyclolanosta-7,9(11)-diene-3,21,25-triol.

	$\delta(H)$	¹ H, ¹ H-COSY	NOE	$\delta(C)$	HMBC
$H_a - C(1)$	1.18–1.27 (<i>m</i>)	$H_{\beta}-C(1), H_{a}-C(2), \ H_{\beta}-C(2)$	H_a -C(2), H-C(3), H-C(5), H _a -C(12), Me(30)	35.6 (<i>t</i>)	C(2), C(3), C(5), C(9), C(10), C(19)
$H_{\beta}-C(1)$	1.69–1.76 (<i>m</i>)	$\mathrm{H}_{a}\mathrm{-C(1)},\mathrm{H}_{a}\mathrm{-C(2)},\ \mathrm{H}_{b}\mathrm{-C(2)}$	Me(30)		
$H_a - C(2)$	1.63 - 1.72 (m)	$H_{\alpha}^{-}-C(1), H_{\beta}^{-}-C(1), H_{\beta}^{-}-C(2), H^{-}-C(3)$	H_{α} -C(1), H-C(3)	27.8 (<i>t</i>)	C(3), C(4), C(10)
$H_{\beta}-C(2)$	1.54–1.62 (<i>m</i>)	$H_{\alpha} - C(1), H_{\beta} - C(1), H_{\alpha} - C(2), H - C(3)$	Me(19), Me(29)		
H-C(3)	3.24 (dd, J = 11.7, 4.6)	$H_{\alpha}^{\mu}-C(2), H_{\beta}-C(2)$	$H_a - C(1), H_a - C(2), H_\beta - C(2), H - C(5), Me(28)$	79.0 (<i>d</i>)	C(4), C(28), C(29)
C(4)				38.9 (s)	
H-C(5)	1.05 (dd , $J = 10.8, 2.1$)	$\mathrm{H}_{a}\mathrm{-C(6)},\mathrm{H}_{\beta}\mathrm{-C(6)}$	H_a -C(1), H-C(3), CH ₂ (7), H-C(17), Me(30)	50.4 (<i>d</i>)	C(4), C(6), C(7), C(10), C(19), C(28), C(29)
$H_a - C(6)$	1.65 - 1.72 (m)	$H-C(5), H_{\beta}-C(6), CH_{2}(7)$	Me(28)	18.2 (<i>t</i>)	C(5), C(7), C(8), C(10)
$H_{\beta}-C(6)$	1.47–1.55 (<i>m</i>)	$H-C(5), H_a-C(6), CH_2(7)$	CH ₂ (7), CH ₂ (11), Me(18), Me(19), Me(29)		
CH ₂ (7)	2.02–2.09 (<i>m</i>)	$\mathrm{H}_{a} - \mathrm{C}(6), \mathrm{H}_{\beta} - \mathrm{C}(6)$	H-C(5), H _{β} -C(6), H _{α} -C(15), H _{β} -C(15), Me(30)	26.5 (<i>t</i>)	C(8), C(9)
C(8)				134.3 (s)	
C(9)				134.4 (s)	
C(10)				37.0 (s)	
CH ₂ (11)	1.95–2.05 (<i>m</i>)	$\mathrm{H}_{\alpha} - \mathrm{C}(12), \mathrm{H}_{\beta} - \mathrm{C}(12)$	$H_{\beta}-C(6), H_{\alpha}-C(12),$ Me(18), Me(19)	20.9 (t)	
$H_a - C(12)$	1.46–1.55 (<i>m</i>)	$CH_2(11), H_\beta - C(12)$	$H_a - C(1), CH_2(11), H - C(17)$	30.6 (<i>t</i>)	C(13), C(17), C(18)
$H_{\beta}-C(12)$	1.64 - 1.72 (m)	$CH_2(11), H_a - C(12)$	Me(18), H-C(21)		
C(13)				45.4 (s)	
C(14)				48.6(s)	
$H_{\alpha}-C(15)$	1.20 - 1.28(m)	$H_{\beta}-C(15), H_{\alpha}-C(16), H_{\beta}-C(16)$	Me(30)	31.4 <i>(t)</i>	C(16), C(30)
$H_{\beta}-C(15)$	1.61 - 1.68(m)	$H_a - C(15), H_a - C(16), H_{\beta} - C(16)$	Me(18)		
$H_{\alpha}-C(16)$	1.68–1.77 (<i>m</i>)	H_{α} -C(15), H_{β} -C(15), H_{β} -C(15), H_{β} -C(16), H -C(17)	$H_{a}-C(22), Me(30)$	26.5 (<i>t</i>)	C(17)
$H_{\beta}-C(16)$	1.92–2.00 (<i>m</i>)	$H_{\alpha}-C(15), H_{\beta}-C(15), H_{\alpha}-C(15), H_{\alpha}-C(16), H-C(17)$	H-C(20), H _a -C(22), H _a -C(23)		
H-C(17)	1.65–1.74 (<i>m</i>)	$H_{a}-C(16), H_{\beta}-C(16), H_{$	$H_a - C(12), H - C(21), Me(30)$	50.5 (<i>d</i>)	C(13), C(18)
Me(18)	0.69 (s)		$H_{\beta}-C(6), CH_2(11), H_{\beta}-C(15), Me(19), H-C(20)$	16.4 (q)	C(12), C(13), C(14), C(17)

Table 2. ¹*H* and ¹³*C*-*NMR*, ¹*H*,¹*H*-*COSY*, *NOE*, and *HMBC* ($H \rightarrow C$) *Data of* **2**. At 500 (¹H) and 125 (¹³C) MHz in CDCl₃; δ in ppm, *J* in Hz.

T 11 1	(
Ianie /	ICONT 1
I u u u u u	veont.

	$\delta(\mathrm{H})$	¹ H, ¹ H-COSY	NOE	$\delta(C)$	HMBC
Me(19)	0.98 (s)		$H_{\beta}-C(2), H_{\beta}-C(6), CH_{2}(11), H_{\beta}-C(15), Me(18), Me(23)$	19.1 (q)	C(1), C(5), C(9), C(10)
H-C(20)	1.70–1.88 (<i>m</i>)	$H_a - C(17), H - C(21), H_a - C(22), H_b - C(22)$	$H_{\beta}-C(16), Me(18), H_{\beta}-C(23), H-C(24)$	48.9 (<i>d</i>)	C(17), C(21)
H-C(21)	3.76(t, J = 8.7)	H–C(20), H–C(24)	$H-C(17), H_a-C(22), H_a-C(23), Me(26), Me(27)$	81.4 (<i>d</i>)	C(17), C(20), C(25)
$H_{\alpha}-C(22)$	1.17–1.26 (<i>m</i>)	$H-C(20), H-C(22), H_{\alpha}-C(23), H_{\beta}-C(23)$	$H_{\beta}-C(16), H-C(21), H_{\beta}-C(22)$	23.9 (<i>t</i>)	C(17), C(20), C(21)
$H_{\beta}-C(22)$	1.63–1.72 (<i>m</i>)	H-C(20), H _a -C(22), H _a -C(23), H _b -C(23)	$H_{\alpha}-C(22)$		
H_a -C(23)	1.30–1.40 (<i>m</i>)	$H_{\alpha}-C(22), H_{\beta}-C(22), H_{\beta}-C(22), H_{\beta}-C(23), H-C(24)$	$H_{\beta}-C(16), H-C(21), H_{\beta}-C(23)$	27.3 (<i>t</i>)	C(20), C(21), C(25), C(26), C(27)
$H_{\beta}-C(23)$	1.77–1.86 (<i>m</i>)	$H_{\alpha}-C(22), H_{\beta}-C(22), H_{\alpha}-C(23), H_{\alpha}-C(23), H-C(24)$	$H-C(20), H_a-C(23), Me(26), Me(27)$		
H-C(24)	1.85–1.94 (<i>m</i>)	$H-C(21), H_a-C(23), H_\beta-C(23)$	H–C(20), Me(26), Me(27)	56.0 (<i>d</i>)	C(20), C(21), C(25), C(26), C(27)
C(25)				73.5(s)	
Me(26)	1.21 ^a) (s)		H-C(21), H _{β} -C(23), H-C(24), Me(27)	30.3^{a}) (q)	C(24), C(25), C(26)
Me(27)	1.21 ^a) (s)		H-C(21), H-C(24), Me(26)	24.2 ^a) (q)	C(24), C(25), C(26)
Me(28)	1.00 (s)		$H-C(3), H-C(5), H_{a}-C(6)$	28.0 (q)	C(3), C(4), C(5), C(29)
Me(29)	0.81 (s)		$H_{\beta}-C(2), H_{\beta}-C(6), H_{\beta}-C(6), H_{\beta}-C(15), Me(19)$	15.4 (q)	C(3), C(4), C(5), C(28)
Me(30)	0.89 (s)		$H_{a} - C(1), H - C(5), CH_{2}(7), H - C(17)$	24.3 (q)	C(8), C(13), C(14), C(15)

The ¹H- and ¹³C-NMR spectra of **3** resembled those of **1**, except for H–C(7) (δ (H) 5.47, *d*), H–C(11) (δ (H) 5.37, *d*) in the ¹H-NMR spectrum and C(7) (δ (C) 120.0, *d*), C(8) (δ (C) 142.9, *s*), C(9) (δ (C) 145.9, *s*), and C(11) (δ (C) 116.5, *s*) in the ¹³C-NMR spectrum. The HMBC plot showed the long-range correlations Me(19) (δ (H) 0.98)/C(9), Me(30) (δ (H) 0.91)/C(8), H_a–C(5) (δ (H) 1.09)/C(6) and C(7), and CH₂(12) (δ (H) 2.17 and 2.38)/C(11). The configuration at C(20) and C(24) of the cyclopentane moiety was established as (20*R*) and (24*S*) because significant NOEs were observed from H–C(20) to H_β–C(16), Me(18), and H_β–C(23), and from H–C(24) to H–C(21) and Me(27), which is same as that of **1** (*Fig.* 3). Other NOEs were H–C(7)/CH₂(6), CH₂(15), and Me(30), H–C(11)/CH₂(1), CH₂(12), and Me(19), H_a–C(3)/H_a–C(1), H_a–C(5), and Me(28), H_a–C(21)/CH₂(12), H_a–C(17), H_β–C(20), and Me(26), and H_β–C(16)/Me(18), H_β–C(20), H_β–C(22), and Me(26) (*Fig.* 3).

It is suggested that compounds 1-3 are biosynthesized from (3β) -3-hydroxylanosta-8,24-dien-21-al, which is the main triterpene constituent in these sclerotia (*Scheme*). Attack by the C(24)=C(25) bond on C(21)=O and the C-C bond-formation yields an

Fig. 2. Key NOE correlations for 2

intermediate **a**, which then generates 1-3 by the attack of an OH⁻-anion at C(25) of the cation.

This study was supported by a *Grant-in-aid for High Technology* from the Ministry of Education, Science, Sports and Culture, Japan.

Experimental Part

General. Column chromatography (CC): silica gel (70–230 mesh, Merck). Medium-pressure liquid chromatography (MPLC): silica gel (230–400 mesh, Merck). HPLC: Jasco-PU-1586 instrument equipped with a differential refractometer (RI 1531). Anal. TLC: silica gel 60 F_{254} (Merck). Prep. TLC: silica gel F_{254} plates (20 × 20 cm, 0.5 mm thick; Merck). M.p.: Yanagimoto micro-melting-point apparatus; uncorrected. Optical rotations: Jasco-DIP-1000 digital polarimeter. UV Spectra: Hitachi U-200, λ_{max} (ε) in nm. IR Spectra: Perkin-Elmer-1720X FT-IR spectrophotometer; $\tilde{\nu}_{max}$ in cm⁻¹. ¹H- and ¹³C-NMR Spectra: Varian-INOVA-500 spectrometer with standard pulse sequences, at 500 and 125 MHz, resp.; CDCl₃ as the solvent and Me₄Si as the internal standard. EI-MS: Hitachi-4000-H double-focusing mass spectrometer (70 eV); in m/z (rel. %).

Material. Inonotus obliquus was successfully cultured by *Salada Melon Co.*, *Ltd.*, Nayoro City, Hokkaido, Japan. Sclerotium (4 kg) of *Inonotus obliquus* was obtained in April, 2004 from this company.

Extraction and Isolation. The sclerotia of white-rot fungus, *Inonotus obliquus* (PERS. Fr.) PIL. (4 kg) was extracted with CHCl₃ (10 l) in 2005. Preliminary CC (silica gel (3 kg)) of the CHCl₃ extract (153.9 g) of the sclerotia of *I. obliquus* has been reported [18], with separation into *Fractions A – E*. The residue of *Fr. D* was recrystallized from MeOH/CHCl₃ to give trametenolic acid (10.9 g), and the filtrate (23.8 g) was subjected to CC (silica gel (1.5 kg)). Elution with CHCl₃/AcOEt 5 :1; (*Frs.* 76–89) gave a yellow residue *D1*, 1.85 g), and further elution with CHCl₃/AcOEt 2 :1; (*Frs.* 90–115) gave a yellow residue *D4* (3.25 g). Residue *D4* was subjected to MPLC (silica gel (100 g), hexane/AcOEt 3 :1) to give a crystalline residue *D5* (*Frs.* 61–68; 145.2 mg), which was separated by HPLC (*ODS*, 90% MeOH): **1** (65.9 mg), **2** (13.1 mg), and **3** (7.2 mg).

Inonotsutriol A (=(3 β ,21R,24S)-21,24-Cyclolanost-8-ene-3,21,25-triol=(3 β ,5 α ,17 β)-17-[(1R,2R,3S)-2-Hydroxy-3-(1-hydroxy-1-methylethyl)cyclopentyl]-4,4,14-trimethylandrost-8-en-3-ol; **1**): Colorless crystals. M.p. 203–205° (from MeOH/CHCl₃). [α]_D²⁰ = +40.2 (c = 0.27, CHCl₃). IR (KBr): 3368 (OH),

Table 3.	¹ <i>H</i> - and ¹³ <i>C</i> - <i>NMR</i> , ¹ <i>H</i> , ¹	H-COSY, NOE, and	<i>d HMBC</i> (F	$H \rightarrow C)$ Data	of 3 . At 500 (¹ H) and 12	$5(^{13}C)$
		MHz in CDCl ₃	; δ in ppm, .	J in Hz.			

	$\delta(\mathrm{H})$	¹ H, ¹ H-COSY	NOE	$\delta(C)$	HMBC
$H_{\alpha}-C(1)$	1.45 (<i>td</i> , <i>J</i> = 13.5, 4.2)	$\mathrm{H}_{\beta}\mathrm{-C(1),CH_2(2)}$	$CH_2(2), H-C(3), H-C(5), H-C(11)$	35.8 (<i>t</i>)	C(2), C(3), C(5), C(9), C(10), C(19)
$H_{\beta}-C(1)$	2.00 (dt, J = 13.5, 4.2)	H_{α} -C(1), CH ₂ (2)	$CH_2(2), H-C(11), Me(19)$		
CH ₂ (2)	1.63–1.74 (<i>m</i>)	$H_{\alpha}-C(1), H_{\beta}-C(1), H_{\beta}-C(1), H_{\beta}-C(3)$	Me(30)	27.8 (<i>t</i>)	C(1), C(3), C(4), C(10)
H-C(3)	3.25 (dd, J = 11.3, 4.2)	$CH_2(2)$	$H_{\alpha}-C(1), CH_{2}(2), H-C(5), Me(28)$	79.0 (<i>d</i>)	C(28), C(29)
C(4)				38.7 (s)	
H-C(5)	1.09 (<i>dd</i> , <i>J</i> = 10.8, 5.0)	CH ₂ (6)	H_{α} -C(1), H-C(3), H_{α} -C(6), Me(28), Me(30)	49.1 (<i>d</i>)	C(3), C(4), C(6), C(7), C(9), C(10), C(19), C(28)
CH ₂ (6)	2.04–2.12 (<i>m</i>)	H-C(5), H-C(7)	Me(19), Me(28), Me(29)	23.0	C(4), C(5), C(7), C(8), C(10)
H-C(7)	5.47 $(d, J = 6.2)$	CH ₂ (6)	$CH_2(6), H_a - C(15), H_{\beta} - C(15), Me(30)$	120.0 (<i>d</i>)	C(6), C(9), C(14)
C(8)			,	142.9 (s)	
C(9)				145.9 (s)	
C(10)				37.4 (s)	
H-C(11)	5.37 (d, J = 6.5)	$H_a - C(12), H_\beta - C(12)$	$H_a - C(1), H_\beta - C(1), H_{\alpha} - C(12), H_{\beta} - C(12), Me(19)$	116.5 (<i>d</i>)	C(8), C(10), C(12), C(13)
$H_a - C(12)$	2.17 (<i>d</i> , <i>J</i> = 17.6)	$H-C(11), H_{\beta}-C(12)$	H-C(11), H-C(17), H-C(21), Me(30)	35.6 (<i>t</i>)	C(9), C(11), C(13), C(14), C(17), C(18)
$H_{\beta}-C(12)$	2.38 $(dd, J = 17.6, 6.5)$	$H-C(11), H_{\alpha}-C(12)$	H-C(11), Me(18), H-C(21)		
C(13) C(14)				43.8 (s) 50.6 (s)	
$H_a - C(15)$	1.38–1.45 <i>(m)</i>	$H_{\beta}-C(15), H_{\alpha}-C(16), H_{\beta}-C(16)$	H-C(7), Me(30)	31.5 <i>(t)</i>	C(13), C(14), C(16), C(17), C(30)
$H_{\beta}-C(15)$	1.63–1.69 (<i>m</i>)	$H_{\alpha}-C(15), H_{\alpha}-C(16), H_{\beta}-C(16)$	H-C(7), Me(18), Me(19), Me(29)		
$H_a - C(16)$	1.87–1.94 (<i>m</i>)	$H_{\alpha} - C(15), H_{\beta} - C(15), H_{\beta} - C(15), H_{\beta} - C(16), H - C(17)$	$H_a - C(22), Me(30)$	26.8 (<i>t</i>)	C(13), C(14), C(15), C(17), C(20)
$H_{\beta}-C(16)$	1.32–1.39 <i>(m)</i>	$H_{\alpha}-C(15), H_{\beta}-C(15), H_{\alpha}-C(15), H_{\alpha}-C(16), H-C(17)$	Me(18), H–C(20), H _{β} -C(22), Me(26)		
H-C(17)	1.81–1.88 (<i>m</i>)	H_{α} -C(16), H_{β} -C(16), H_{-C} (16), H_{-C} (20)	$H_a - C(12), H - C(21), H_a - C(22), H_a - C(23), Me(30)$	49.9 (<i>d</i>)	C(13), C(14), C(16), C(18), C(20), C(22)
Me(18)	0.62 (s)		$H_{\beta}-C(12), H_{\beta}-C(15), H_{\beta}-C(15), H_{\beta}-C(16), Me(19), H-C(20)$	16.8 (q)	C(12), C(12), C(12), C(13), C(14), C(17)

1522

Tabla	3	(cont)

	$\delta(\mathrm{H})$	¹ H, ¹ H-COSY	NOE	$\delta(C)$	HMBC
Me(19)	0.98 (s)		$H_{\beta}-C(1), CH_{2}(6), H-C(11), H_{\beta}-C(15), Me(18), Me(29)$	22.7 (q)	C(1), C(5), C(9), C(10)
H-C(20)	1.87 (s)	H-C(17), H-C(21), H _a -C(22), H _b -C(22)	$H_{\beta}-C(16), Me(18), H_{\beta}-C(23)$	47.8 (<i>d</i>)	C(13), C(16), C(17), C(21), C(22)
H-C(21)	3.74(t, J = 7.4)	H-C(20), H-C(24)	$H_{\alpha}-C(12), H_{\beta}-C(12), H_{-C}(12), H_{-C}(17), Me(26)$	79.2 (<i>d</i>)	C(20), C(24), C(25)
$H_{\alpha}-C(22)$	1.25–1.27 (<i>m</i>)	$H-C(20), H_{\beta}-C(22), H_{\alpha}-C(23), H_{\beta}-C(23)$	H-C(17), H-C(21), H _{β} -C(22), H _{β} -C(23)	24.5 (<i>t</i>)	C(20), C(21), C(23), C(24)
$H_{\beta}-C(22)$	1.65–1.71 (<i>m</i>)	H-C(20), H _a -C(22), H _a -C(23), H _b -C(23)	$H_{a}-C(22), H_{a}-C(23), H_{\beta}-C(23), H-C(24), Me(26)$		
H_{α} -C(23)	1.29–1.37 (<i>m</i>)	H_{α} -C(22), H_{β} -C(22), H_{β} -C(22), H_{β} -C(23), H -C(24)	$H-C(17), H_{\beta}-C(22)$	27.7 (<i>t</i>)	C(20), C(21), C(22), C(24), C(25)
$H_{\beta}-C(23)$	1.80–1.87 (<i>m</i>)	$H_{\alpha}-C(22), H_{\beta}-C(22), H_{\alpha}-C(23), H_{\alpha}-C(23), H-C(24)$	H-C(20), H_{β} -C(22), Me(26)		
H-C(24)	1.86–1.94 (<i>m</i>)	$H-C(21), H_a-C(23), H_\beta-C(23)$	H-C(21), Me(27)	57.8 (<i>d</i>)	C(21), C(23), C(25), C(26), C(27)
C(25)				73.7(s)	
Me(26)	1.22^{a}) (s)		$H_{\beta}-C(22), H_{\beta}-C(23), Me(24)$	24.1 (q)	C(24), C(25), C(27)
Me(27)	1.24^{a}) (s)		H-C(21)	30.8 (q)	C(24), C(25), C(26)
Me(28)	1.00 (s)		$H-C(3), H-C(5), H_a-C(6), Me(29)$	28.1 (q)	C(3), C(4), C(5), C(29)
Me(29)	0.88 (s)		$H_{\beta}^{-}-C(6), H_{\beta}^{-}-C(15),$ Me(19), Me(28)	15.8 (q)	C(3), C(4), C(5), C(28)
Me(30)	0.91 (s)		$H-C(5), H-C(7), H_a-C(12), H_a-C(15), H-C(17)$	25.63 (q)	C(8), C(13), C(14), C(15)

2947, 1456, 1372, 1172, 1026. ¹H- and ¹³C-NMR: *Table 1*. EI-MS: 458 (52, M^+), 443 (33, $[M - Me]^+$), 425 (100, $[M - Me - H_2O]^+$), 407 (96), 389 (13), 314 (8), 299 (44). HR-EI-MS: 458.3763 (M^+ , $C_{30}H_{50}O_3^+$; calc. 458.3760).

Inonotsutriol C (= (3 β ,21R,24S)-21,24-Cyclolanosta-7,9(11)-diene-3,21,25-triol = (3 β ,5 α ,17 β)-17-[(1R,2R,3S)-2-Hydroxy-3-(1-hydroxy-1-methylethyl)cyclopentyl]-4,4,14-trimethylandrosta-7,9(11)-dien-3-ol; **3**): Colorless crystals. M.p. 213 – 215° (from MeOH/CHCl₃). [α]₂₀²⁰ = +72.6 (c = 0.21, CHCl₃). UV (EtOH): 232 (12000), 237 (14500), 245 (9000). IR (KBr): 3675 (OH), 2950, 1653, 1559, 1374, 1158, 1028.

Fig. 3. Key NOE correlations for 3

Scheme. Plausible Biogenetical Pathway to Compounds 1-3

 $H^{+} O^{-20} O^{+} H^{+} O^{-20} O^{+} O^$

¹H- and ¹³C-NMR: *Table 3*. EI-MS: 456 (19, M^+), 438 (100, $[M - H_2O]^+$), 423 (14, $[M - Me - H_2O]^+$), 405 (8), 356 (20), 312 (34), 297 (16). HR-EI-MS: 456.3607 (M^+ , $C_{30}H_{48}O_3^+$; calc. 456.3604).

REFERENCES

- D.-L. Hawksworth, P.-M. Kirk, B.-C. Sutton, D.-N. Pegler, 'Ainsworth and Bisbi's Dictionary of the Fungi', 8th edn, CAB International, University Press, Cambridge, 1995, p. 616.
- [2] M.-B. Ellis, P.-J. Ellis, 'An Identification Handbook', London, Chapman and Hall, 1990, p. 329.
- [3] T. Yamaguchi, Ringakkai Hokkaido Sibu Ronbunshu 1992, 40, 30.
- [4] T. Mizuno, C. Zhuang, K. Abe, H. Okamoto, T. Kiho, S. Ukai, S. Leclerc, L. Meijer, Int. J. Med. Mushr. 1999, 1, 301.
- [5] J.-R. Park, J.-S. Park, E.-H. Jo, J.-W. Hwang, S.-J. Kim, J.-C. Ra, O. I. Okezie, Y.-S. Lee, K.-S. Kang, *BioFactors* 2006, 27, 147.
- [6] Y. O. Kim, H. W. Park, J. H. Kim, J. Y. Lee, S. H. Moon, C. S. Shin, Life Sci. 2006, 79, 72.
- [7] R. D. Petrova, S. P. Wasser, J. A. Mahajna, C. M. Denchev, M. Cretomir, E. Nevo, *Int. J. Med. Mushr.* 2005, 7, 141.
- [8] M. A. Sysoeva, V. S. Gamayurova, O. Yu. Kuznetsova, Russ. Pat. RU2231786, 2004.
- [9] Y.-M. Park, J.-H. Won, Y.-H. Kim, J.-W. Choj, H.-J. Park, K.-T. Lee, J. Ethnopharmacol. 2005, 101, 120.
- [10] I.-K. Lee, Y.-S. Kim, Y.-W. Jang, J.-Y. J. Jung, B.-S. Yun, Bioorg. Med. Chem. Lett. 2007, 17, 6678.
- [11] Y. Nakajima, Y. Sato, T. Konishi, Chem. Pharm. Bull. 2007, 55, 1222.
- [12] F.-Q. Zhao, H.-S. Pu, Zhongcaoyao 2006, 37, 1777.
- [13] H.-G. Kim, D.-H. Yoon, C.-H, Kim, B. Shrestha, W.-C. Chang, S.-Y. Lim, W.-H. Lee, S.-G. Han, J.-O. Lee, M.-H. Lim, G.-Y. Kim, S. Choi, W.-O. Song, J.-M. Sung, K.-C. Hwang, T.-W. Kim, *J. Med. Food* **2007**, *10*, 80.
- [14] V. G. Babitskaya, V. V. Scherba, N. V. Ikonnikova, N. A. Bisko, N. Y. Mitropolskaya, Int. J. Med. Mushr. 2002, 4, 139.
- [15] Y. K. Park, H. B. Lee, E.-J. Jeon, H. S. Jung, M.-H. Kang, BioFactors 2004, 21, 109.
- [16] K. W. Hyun, S. C. Jeong, D. H. Lee, J. S. Park, J. S. Lee, *Peptides* 2006, 27, 1173.
- [17] T. Nakata, T. Yamada, S. Taji, H. Ohishi, S. Wada, H. Tokuda, K. Sakuma, R. Tanaka, Bioorg. Med. Chem. 2007, 15, 257.
- [18] S. Taji, T. Yamada, Y. In, S. Wada, Y. Usami, K. Sakuma, R. Tanaka, Helv. Chim. Acta 2007, 90, 2047.
- [19] Y. Shin, Y. Tamai, M. Terazawa, J. Wood Sci. 2001, 47, 313.

Received March 6, 2008